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Abstract. The methods of fluctuation electrodynamics and the molecular cohesive force theory
have been used to obtain an expression for the attractive force density between two absorbing
media varying in temperature and separated by a nonabsorbing plane-parallel layer. The spectral
density of the attractive force was calculated as the stress tensor projection on the exterior normal
to the solid surface. The mean-square characteristics of the fluctuation field of these media were
sought using the generalized Kirchhoff’s law and the Green function of the related regular
problem. A variety of solutions have been obtained depending on a temperature relationship
of the interacting solid media. It is shown that for solids of the same temperature the obtained
expression yields a formula describing the force of attraction in equilibrium.

1. Introduction

A theory of the interacting force between two atoms without a constant dipole moment
was developed in [1, 2]. The existence of the attractive forces between neutral particles
determines existence of such forces also between two solids separated by a very small
gap. A macroscopic theory of molecular forces of attraction between solids separated by
a vacuum space or a nonabsorbing medium was proposed in [3]. The basic idea of this
theory is that media interact via a fluctuation electromagnetic field that is always present
inside any absorbing medium and emerges from the latter as thermal radiation and a near-
quasistationary (evanescent) field. The author of the theory has considered interaction of
solid media filling semi-infinite solids with plane-parallel boundaries, separated by some
gap, and calculated spectral density of the cohesive force by solving a boundary-value
problem with the relevant boundary conditions and random extraneous sources distributed
in these media. The solution has a broad generality and is applicable to any media at any
temperature. Besides, in the limiting case of a rarified medium it yields the well known
laws of interaction for individual atoms. The same result was obtained in the monograph
[4] where the generalized Kirchhoff’s formula, the complex Lorentz lemma, and the Green
function of the regular diffraction problem for a point source located in a plane nonabsorbing
layer between two absorbing homogeneous isotropic media were applied to the problem of
interest. In [5] the authors provide a general theory of the van der Waals forces, constructed
using the methods of the quantum theory of field, which can be used for the determination
of the forces between two solids separated by an absorbing layer. It should be noted that the
formulae obtained in [3] are only slightly changed here. Interestingly, both attraction and
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repulsion processes are possible depending on a relationship between the dielectric constants
of the three interacting media. Note that the focus in the above studies is on the equilibrium
situation, when all media involved in the force interaction have equal temperatures.

First experimental measurements of the attractive force between two plane-parallel plates
separated by a layer about 103 Å thick [6] were in good agreement with the developed theory.
Further attempts at experimental verification of the theory by different authors [7–9] also
showed good qualitative and quantitative agreement between theory and experiment.

The latest advancement in probe microscopy and physics of microcontacts has imparted
new meaning and stimulus to the studies of interaction of solids via thermal fluctuation
fields. In particular, extensive application of probe microscopes to investigations and local
modification of surface properties in condensed matter [10, 11] gave rise to problems in
which one has to consider ponderomotive interaction and energy exchange between sample
and tip that differ in temperature.

In this work, an expression for the attractive force density between two arbitrary
absorbing media separated by a nonabsorbing plane-parallel layer and heated to different
temperatures was obtained by calculating the spectral component of the Maxwell stress
tensor. The limiting cases, when one medium has a much higher temperature than the
other, are considered. It is also shown that, if media are of the same temperature, the
attractive force expression is identical to the formulae for the equilibrium case.

2. Problem statement

The electrodynamical theory of thermal fluctuations provides a means for a detailed analysis
of the structure and properties of the fluctuating electromagnetic fields of heated solids.
These properties include, for example, spectral intensities of electric and magnetic energy,
Poynting vector, Maxwell stress tensor. The relevant statistic mean square values of the
bilinear forms, i.e. various correlation functions or spectral intensities of fluctuations can
be found by solving an ordinary boundary problem of electrodynamics with the use of
the electrodynamical fluctuation–dissipation theorem (FDT) for the correlation functions of
extraneous fluctuating currents distributed over absorbing medium.

The second moments of the spectral amplitude of a fluctuating field can be found in
another way, using their relationship with thermal losses of the diffraction field of point
sources from the formulae generalizing the classical Kirchhoff’s equation [4]:

±〈A`1(r1)B
∗
`2(r2)〉 = 2

π
2(ω, T )QAB∗(`21, r1; `2, r2) (1)

where A`1 and B`2 define the two out of six chosen components of strengthE, H
of the thermal field in the`21 and `2 orientations of point sources;2(ω, T ) =
(h̄ω/2) coth(h̄ω/2kBT ) is the average energy of oscillator at temperatureT , kB is
Boltzmann’s constant,QAB∗ are the mixed thermal losses incurred in the investigated
material by the diffraction field from point sources placed at pointsr1 andr2. The plus sign
corresponds to two electric or two magnetic components, the minus sign is for an electric-
and a magnetic-component. Complex conjugation is designated by the asterisk, the angle
brackets indicate an average over an ensemble of realizations of the random sources. It is
obvious that a search for the Green function of the regular problem can be a simpler process
in some cases.

If the second moments of the spectral amplitudes of a fluctuating field between two solids
are known, we find the density of the force acting on these solids by frequency-integrating
the spectral component of the Maxwell stress tensor projection onto the direction of the unit
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normal to the given surface. The spectral density of this tensor across positive frequencies
in some pointr [4], is

T αβω (r) = 1

8π
{2〈Eα(ω, r)D∗β(ω, r)〉 − 〈E(ω, r)D∗(ω, r)〉δαβ + c.c.}

+ 1

8π
{2〈Hα(ω, r)B∗β(ω, r)〉 − 〈H(ω, r)B∗(ω, r)〉δαβ + c.c.} (2)

where the expansion

E(t, r) =
∫ ∞
−∞
E(ω, r) exp(iωt) dω

is used for the real stationary fields and, similarly, for the fieldH and inductionsD and
B.

We now seek the density of the force between two absorbing homogeneous isotropic
media with different temperatures (figure 1). Assume the half-spacez 6 0 filled with a
material characterized by complex dielectric constantsε1, µ1, the half-spacez > l filled with
a medium with the constantsε2, µ2, while the gap between them filled with a nonabsorbing
medium with the real dielectric constantsε, µ. The spectral density of the force will be
sought as thezz-component of the Maxwell stress tensor (2) on the surfacez = 0. We
assume that two independent systems of extraneous random sources of fluctuation fields
are located in two thermostats with temperaturesT1 and T2 kept constant. Using the
reciprocity theorem and the principle of superposition of fields, we make the required square
combinations from the vector components of the fluctuation field. Next, after averaging over
the equilibrium ensembles of random currents, we apply the electrodynamic FDT to obtain
mean square characteristics of the fluctuation field, expressed via the thermal losses of
diffraction fields in either medium, induced by point dipolesp placed in the gap at some
distanceh from the lower medium and oriented in an appropriate fashion. Thus, multiplying
the lossesQ(2) in the first medium by2(ω, T1), and in the second medium-Q(2) by2(ω, T2),
we have:

〈|Ez(r)|2〉 = 2

π
{2(ω, T1)Q

(1)
ee∗(`z; r)+2(ω, T2)Q

(2)
ee∗(`z; r)}

〈|Hz(r)|2〉 = 2

π
{2(ω, T1)Q

(1)
mm∗(`z; r)+2(ω, T2)Q

(2)
mm∗(`z; r)}

(3)

Figure 1. The model of interacting solids.



4372 I A Dorofeyev

where notationsee∗ andmm∗ indicate the requirement to find the losses of regular fields
induced by electric and magnetic point dipoles, respectively.

In a similar way, we need to find other mean square values of the fluctuation field
components in the 0x and 0y and, using (2), derive the sought-after expression for the
spectral density of the forcẽFω = T zzω . Further integration over the positive frequencies
will yield a solution to the problem.

3. Solution

Using the obtained expressions (A3) and (A5) (from the appendix), we now seek the mean
square values for the components of the electric strength of a thermal field at the boundary
z = 0. To find a convenient form of solution, one should bear in mind the fact that in
the integration over real variableλ, the variableq takes either pure imaginary or pure real
values. As a result,

〈|Ez|2〉 = −22(ω, T1)

πωε
Re

∫ ∞
0

λ3dλ

iq

{[
cosh(ql)+ (β2/α̃2) sinh(ql)

]
D̃

}

+2[2(ω, T1)−2(ω, T2)]

πωε
Re

∫ ∞
0

λ3dλ

iq∗

{
β2

α̃2
|D̃|−2

}
〈|Ex |2〉 = 〈|Ey |2〉 = −2(ω, T1)

πωε
Re

∫ ∞
0

λdλ

i

{
k2

q

[
cosh(ql)+ (β2/α2) sinh(ql)

]
D

−q β1

α̃1

[
sinh(ql)+ (β2/α̃2) cosh(ql)

]
D̃

}
+ [2(ω, T1)−2(ω, T2)]

πωε

×Re
∫ ∞

0

λdλ

i

{
k2β∗2
qα∗2
|D|−2− q β2|β1|2

α̃2|̃α1|2 |D̃|
−2

}
. (4)

RearrangingD andD̃, α̃j andαj (j = 1, 2) and vice versa in these formulae will yield
the mean square values for the magnetic strength components of a fluctuating field. Note
that atT1 = T2 the resulting expressions are exactly the same as the corresponding equations
in the equilibrium problem [3, 4].

Knowing the mean square values of the fluctuating-field components, we can find from
(2) the spectral density of the force acting on the lower medium:

F̃ω = T zzω = −
2(ω, T1)

2π2ω
Re

∫ ∞
0

qλdλ

i

(
1

D
+ 1̃
D̃

)
+ [2(ω, T2)−2(ω, T1)]

2π2ω
Re

∫ ∞
0

qλdλ

i

(
δ1

|D|2 +
δ̃1

|D̃|2
)

(5)

where

1 =
(
β1

α1
+ β2

α2

)
sinh(ql)+

(
1+ β1β2

α1α2

)
cosh(ql)

1̃ =
(
β1

α̃1
+ β2

α̃2

)
sinh(ql)+

(
1+ β1β2

α̃1α̃2

)
cosh(ql)

δ1 = β2

α2

(
q

q∗
− |β1|2
|α1|2

)
δ̃1 = β2

α̃2

(
q

q∗
− |β1|2
|̃α1|2

)
.
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To represent (5) in several equivalent forms, use the following equalities that are easy to
prove:

Re
∫ ∞

0

qλdλ

i

(
1

D

)
= −Re

∫ ∞
0

qλdλ

i

(
δ1

|D|2 +
δ2

|D|2
)

Re
∫ ∞

0

qλdλ

i

(
1̃

D̃

)
= −Re

∫ ∞
0

qλdλ

i

(
δ̃1

|D̃|2
+ δ̃2

|D̃|2
) (6)

where

δ2 = β1

α1

(
q

q∗
− |β2|2
|α2|2

)
δ̃2 = β1

α̃1

(
q

q∗
− |β2|2
|̃α2|2

)
.

Transformation of (5) with account for (6) will yield the following equivalent expressions
for the spectral force density:

F̃ω = 2(ω, T1)

2π2ω
Re

∫ ∞
0

qλdλ

i

(
δ2

|D|2 +
δ̃2

|D̃|2
)
+ 2(ω, T2)

2π2ω
Re

∫ ∞
0

qλdλ

i

(
δ1

|D|2 +
δ̃1

|D̃|2
)
(7)

F̃ω = −2(ω, T2)

2π2ω
Re

∫ ∞
0

qλdλ

i

(
1

D
+ 1̃
D̃

)
+ [2(ω, T1)−2(ω, T2)]

2π2ω
Re

∫ ∞
0

qλdλ

i

(
δ2

|D|2 +
δ̃2

|D̃|2
)

(8)

F̃ω = − [2(ω, T1)+2(ω, T2)]

4π2ω
Re

∫ ∞
0

qλdλ

i

(
1

D
+ 1̃
D̃

)
+ [2(ω, T2)−2(ω, T1)]

4π2ω
Re

∫ ∞
0

qλdλ

i

(
δ1− δ2

|D|2 +
δ̃1− δ̃2

|D̃|2
)

(9)

where it is seen that for identical materials we shall have

F̃ω = − [2(ω, T1)+2(ω, T2)]

4π2ω
Re

∫ ∞
0

qλdλ

i

(
1

D
+ 1̃
D̃

)
. (10)

From all of the above equations there follows an expression for the spectral density of the
attractive force in equilibrium, whereT1 = T2. In (10) let us separate out spectral density
of the pressure caused only by the radiation modes of a fluctuating electromagnetic field
(06 λ 6 k):

Pω = [2(ω, T1)+2(ω, T2)]

2π2ω
Re

∫ ∞
0

qλdλ

i
= [2(ω, T1)+2(ω, T2)] k3

6π2ω
(11)

which is compensated for by the same pressure on the opposite side of the body. As a
result, we obtain the spectral coupling force that depends only on a distance between the
solids:

Fω(l) = − [2(ω, T1)+2(ω, T2)]

2π2ω
Re

∫ ∞
0

qλdλ

i

{[
(α1+ β1)(α2+ β2)

(α1− β1)(α2− β2)
exp(2ql)− 1

]−1

+
[
(̃α1+ β1)(̃α2+ β2)

(̃α1− β1)(̃α2− β2)
exp(2ql)− 1

]−1
}
. (12)

Integration of this expression over positive frequencies yields the sought-after formula for
the attractive force between two semi-infinite solids with different temperatures. At the same
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time, we change the variables in this expression, assumingq = ikp, qj = iksj (Reqj > 0),
wheresj =

√
(αj α̃j − 1)+ p2, (j = 1, 2) to obtain

F = h̄

4π2c3
Re

∫ ∞
0

∫
p2ω3

[
coth

(
h̄ω

2kBT1

)
+ coth

(
h̄ω

2kBT2

)]
×
{[
(α1p + s1)(α2p + s2)
(α1p − s1)(α2p − s2) exp(2ikpl)− 1

]−1

+
[
(̃α1p + s1)(̃α2p + s2)
(̃α1p − s1)(̃α2p − s2) exp(2ikpl)− 1

]−1
}

dp dω (13)

wherep integration goes from 1 to 0 and then along the imaginary axis from 0 to−i∞.
Note that the force is sought as the stress tensor projection on the unit external normaln
to the surfacez = 0 or on the external normaln′ to the surfacez = l, so it is obvious that
the forces applied to these surfaces should differ in sign,Fz=0 = −Fz=l .

The complex integral (13) is reduced to a form convenient for calculations by changing
the integration paths in the planes of the complex variablesω andp, such as that performed
in [3]. Specifically,p integration should be done only over real values (from 1 to∞), while
for ω only along the imaginary axis (from 0 to−i∞). Then the exponential function will
always have a real index. We have to bear in mind that in our caseε(ω) is an analytical
function in the lower half-plane of complex variableω = ω′ + iω′′ because of which we
take an expansion in terms of exp(iωt). We need to account for the fact that the functions
coth(h̄ω/2kBT1) and coth(h̄ω/2kBT2) have an infinite number of poles on the imaginary
axis, which are, respectively,

ωn = −iξn = −i
2πkBT1

h̄
n ωm = −iξm = −i

2πkBT2

h̄
m

wheren andm are integers. When theω-integration path shifts to the imaginary axis, these
poles should be bypassed on a semicircle.

For convenience of comparison with the equilibrium case, we assume that both the
solids are identical, nonmagnetic, with a vacuum gap between them. We then obtain

F = kBT1

2πc3

∞∑
n=0

′ ∫ ∞
1
p2ξ3

n


[(

sn + p
sn − p

)2

exp(2pξnl/c)− 1

]−1

+
[(

sn + εnp
sn − εnp

)2

exp(2pξnl/c)− 1

]−1
 dp

+ kBT2

2πc3

∞∑
m=0

′ ∫ ∞
1
p2ξ3

m


[(

sm + p
sm − p

)2

exp(2pξml/c)− 1

]−1

+
[(

sm + εmp
sm − εmp

)2

exp(2pξml/c)− 1

]−1
 dp (14)

whereεn = ε(iξn), εm = ε(iξm) are the values of the dielectric constants on the imaginary
axis, sn =

√
εn − 1+ p2, sm =

√
εm − 1+ p2. The prime in the sum indicates that all

terms withn = 0 andm = 0 have to be taken at half-weight.
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4. Discussion

Formula (14) can be used to find the forceF for any distance and any relationship of
temperaturesT1 andT2. At T1 = T2, formula (14) fully coincides with the result obtained
for the first time in [3]. Analysis of the expression for the attractive force is based on the
fact that the key role in the sums is that of the terms in whichξn ∼ c/l andξm ∼ c/l, or
the terms with the numbersn ∼ ch̄/ lkBT1 andm ∼ ch̄/ lkBT2. The situationslkBT /ch̄� 1
and lkBT /ch̄ � 1, whereT1 = T2 = T , have been analysed in detail in [3, 5]. It follows
therefrom that at small distances the temperature of the bodies is absolutely unimportant,
and F ∼ l−3, if l � ch̄/kBT and l � λ0, whereλ0 is the characteristic wavelength in
the absorption spectrum from the object of interest. Ifl � ch̄/kBT , but l � λ0, we have:
F ∼ l−4. In particular for metals, we haveF = h̄cπ2/240l4 regardless of the kind of metal.
At l � ch̄/kBT , F ' kBT (ε0 − 1)2/8πl3(ε0 + 1)2 and it depends on the static values of
the dielectric constantε0 of a material.

WhenT1 6= T2, the relationships may have a wider variety of forms:

l � ch̄

kBT1
l � ch̄

kBT2
l � λ0 F ' h̄

8π2l3

∫ ∞
0

[
ε(iξ)− 1

ε(iξ)+ 1

]2

dξ

l � ch̄

kBT1
l � ch̄

kBT2
l � λ0 F ' π2h̄c

240l4

l � ch̄

kBT1
l � ch̄

kBT2
F ' kB(T1+ T2)

16πl3

(
ε0− 1

ε0+ 1

)2

l � ch̄

kBT1
l � ch̄

kBT2
l � λ0 F ' h̄

16π2l3

∫ ∞
0

[
ε(iξ)− 1

ε(iξ)+ 1

]2

dξ

+ kBT1

16πl3

(
ε0− 1

ε0+ 1

)2

l � ch̄

kBT1
l � ch̄

kBT2
l � λ0 F ' kBT1

16πl3

(
ε0− 1

ε0+ 1

)2

+ π2h̄c

480l4
.

(15)

For numerical computation at any distancel and any temperatures of solids it is more
convenient to use another form of solution. After the substitutionp = x/n andp = x/m
the solution (14) can be represented as

F = 4π2kB
4T1

4

h̄3c3

∞∑
n=0

′ ∫ ∞
n

x2


[(

nsn + x
nsn − x

)2

exp(4πT1xl/h̄c)− 1

]−1

+
[(

nsn + εnx
nsn − εnx

)2

exp(4πT1xl/h̄c)− 1

]−1
 dx

+4π2kB
4T2

4

h̄3c3

∞∑
m=0

′ ∫ ∞
m

x2


[(

msm + x
msm − x

)2

exp(4πT2xl/h̄c)− 1

]−1

+
[(

msm + εmx
msm − εmx

)2

exp(4πT2xl/c)− 1

]−1
 dx (16)

wherensn =
√
n2(εn − 1)+ x2, msm =

√
m2(εm − 1)+ x2.
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The order of magnitude of the attractive force is provided here for the distancesl = 10–
100Å, typical for probe microscopy. In this case,l � h̄c/kBT1,2 andl � λ0 for T1,2 = 300–
2000 K, hence,F ' h̄ω/8π2l3, whereω is the characteristic frequency in the absorption
spectrum of materials. For estimation, assumeω ∼ 1014 rad s−1, thenF ∼ 102–104 N m−2,
which is by far (by many orders) lower than both the destruction threshold and the yield
stress of solid matter.

As shown in [5], the interaction force between two bodies with dielectric constantsε1

and ε2, separated by a gap of widthl filled with an absorbing mediumε3 = ε′3 + iε′′3,
can be obtained from the expression for the interaction force of two bodies separated by
vacuum, if one multiplies either term in the sums (14) atT1 = T2 by ε3/2

3 , and replaces
ε1 and ε2 in all the terms byε1/ε3 and ε2/ε3, and l by l

√
ε3, respectively. Obviously,

this can only be done in the equilibrium case, as in the derivation of the stress tensor in
an absorbing medium the authors in [5] took into account the constancy of the chemical
potential throughout the thickness of a film filling the gap between the bodies, which is
impossible given a temperature gradient.

5. Conclusion

In this paper, an expression for the attractive force between two solids that, in a general
case, may differ in temperature, is obtained. The solution is found by seeking thermal
losses of the field of a point dipole placed in the gap between the solids and by using the
generalized Kirchhoff’s law. Transformation of complex integrals was used to obtain a
variety of forms of the expression for the force spectral density. Options of the solution are
considered depending on a relation between the temperatures of these solids. It is shown
that, if the bodies have the same temperature, the obtained expression for the coupling force
between two solid media yields a formula corresponding to the equilibrium case.
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Appendix. Solution of the regular problem

The losses of the diffraction fieldE0 andH0 of the point dipoles in half-spacesz 6 0
andz > l are sought as the energy flow into absorbing material, i.e. as the integral of the
Poynting vector over the planesz = 0 andz = l, respectively. For example,

Q(1) = − c

16π

∫ ∞
0
r dr

∫ 2π

0
dϕ{[E0,H

∗
0 ]z + c.c.}z=0. (A1)

To this end, we define the dipole field in each of the three media. A common approach to
solving the Maxwell equations in an inhomogeneous medium for the specified sources can
be found in [12]. A solution of the boundary-value problem on the dipole field in a gap
between two half-spaces was obtained in [4]. We are interested in the diffraction field in
absorbing materials 1 and 2, therefore, we shall seek a complete solution to this problem and
extend the result to the cases of three regions with the corresponding boundary conditions
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in the planesz = 0 andz = l. The solution will be found by analogy with the solving of
the problem on a dipole above the conducting ground [13, 14]; in all of the three media we
determine the Hertz vectorZ. It enters ordinary relationships with the scalar and vector
potentials,

ϕ = − 1

εµ
divZ A = 1

c

∂Z

∂t
.

Using the Lorentz condition and the expressions via the potentialsϕ andA, we obtain
the relation betweenE0, H0 andZ. For example, in absorbing media we shall have

E
(j)

0 =
1

εjµj

{
grad(divZ(j))+ k2

jZ
(j)
}

H
(j)

0 =
ik0

µj
rotZ(j)

(A2)

wherek0 = ω/c is the wavenumber in vacuum,k2
j = k2

0εjµj , j = 1, 2, and it is assumed
thatZ ∼ eiωt . By similar formulae one can find the field in the gap, wherek2 = k2

0εµ.
The Maxwell equations in absorbing media and the gap can be met, if the Hertz vector

is known for each of the three media. In our case, to find the Cartesian components of the
Hertz vector in the gap and the absorbing materials we need to solve the equations

1Z + k2Z = −4πµpδ(r − r′)
and

1Z(j) + k2
jZ

(j) = 0 (j = 1, 2) (A3)

whereδ(r−r′) is the delta function,r andr′ are the observation point and the point dipole
coordinates, respectively. If the point dipole with the momentp = (0, 0, pz) is oriented
in the 0z-axis, then the equations are satisfied givenZ = (0, 0, Zz). For a horizontal
orientation of the dipole in the 0x-or 0y-axes, as shown in [13], one needs to assume—to
avoid contradiction in the boundary conditions—that it is the vertical component of the Hertz
vector that is induced, i.e.Z = (Zx, 0, Z̃z) andZ = (Z,0, Z̃z). Physically, this is related to
the effects of media 1 and 2. In other words, one more fieldZ̃ is created by the secondary
sources in media 1 and 2, which is the solution to the homogeneous equations (A3). The
latter have to be completed with the boundary conditions expressing equality between the
tangent components of the diffraction field at the boundariesz = 0 andz = 1. For the
z-oriented dipole, whenZ = (0, 0, Zz), we have

Zz

µ
= Z

(j)
z

µj

1

εµ

∂Zz

∂z
= 1

εjµj

∂Z
(j)
z

∂z

for the x-oriented dipole, whenZ = (Zx, 0, Z̃z)

Zx = Z(j)x
1

µ

∂Zx

∂z
= 1

µj

∂Z
(j)
x

∂z

Z̃z

µ
= Z̃

(j)
z

µj

1

εµ

(
∂Z̃z

∂z
+ ∂Zx

∂x

)
= 1

εjµj

(
∂Z̃

(j)
z

∂z
+ ∂Z

(j)
x

∂x

)
(j = 1, 2).

(A4)

Similar conditions at the boundary are obtained for they-oriented dipole.
With account for the form of equations (A3), we seek the solution in the following

way. Assume that in the gap between the absorbing mediaZz = pzZv; Z̃z = px cosϕZ̃v;
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Z̃z = py sinϕZ̃v; Zx = pxZh; Zy = pyZh where

Zv = µ
∫ ∞

0
J0(λr) exp(−q|z− h|)λdλ

q
+
∫ ∞

0
J0(λr)[G− exp(−qz)+G+ exp(qz)] dλ

Zh = µ
∫ ∞

0
J0(λr) exp(−q|z− h|)λdλ

q
+
∫ ∞

0
J0(λr)[F− exp(−qz)+ F+ exp(qz)] dλ

Z̃v =
∫ ∞

0
J1(λr)[H− exp(−qz)+H+ exp(qz)] dλ

in absorbing materials:Z(j)z = pzZ
(j)
v ; Z̃

(j)
z = px cosϕZ̃(j)v ; Z̃

(j)
z = py sinϕZ̃(j)v ;

Z
(j)
x = pxZ(j)h ; Z(j)y = pyZ(j)h where

Z(1)v =
∫ ∞

0
J0(λr)G1 exp(q1z) dλ; Z

(1)
h =

∫ ∞
0
J0(λr)F1 exp(q1z) dλ

Z̃(1)v =
∫ ∞

0
J1(λr)H1 exp(q1z) dλ Z(2)v =

∫ ∞
0
J0(λr)G2 exp(−q2(z− l)) dλ

Z
(2)
h =

∫ ∞
0
J0(λr)F2 exp(−q2(z− l)) dλ Z̃(2)v =

∫ ∞
0
J1(λr)H2 exp(−q2(z− l)) dλ

whereJn is the Bessel function of ordern, q = √λ2− k2, qj =
√
λ2− k2

j (j = 1, 2). From

the boundary conditions (A4) we find the equations to define the coefficientsG±, F±, H±,
Gj , Fj , Hj , (j = 1, 2):

G1 = α1

[
µ
λ

q
exp(−qh)+G+ +G−

]
G1 = γ1

β1

[
µ
λ

q
exp(−qh)+G+ −G−

]
F1 = µλ

q
exp(−qh)+ F+ + F−

F1 = α1

β1

[
µ
λ

q
exp(−qh)+ F+ − F−

]
H1 = α1 (H+ +H−)
λF1− q1H1 = γ1

[
λ

(
µ
λ

q
exp(−qh)+ F+ + F−

)
+ q(H− −H+)

]
G2 = α2

[
µ
λ

q
exp(−q(l − h))+G+ exp(ql)+G− exp(−ql)

]
G2 = γ2

β2

[
G+ exp(ql)−G− exp(−ql)− µλ

q
exp(−q(l − h))

]
F2 = µλ

q
exp(−q(l − h))+ F+ exp(ql)+ F− exp(−ql)

F2 = α2

β2

[
µ
λ

q
exp(−q(l − h))− F+ exp(ql)+ F− exp(−ql)

]
H2 = α2[H+ exp(ql)+H− exp(−ql)]
λF2+ q2H2 = γ2

[
λ

(
µ
λ

q
exp(−q(l − h))+ F+ exp(ql)+ F− exp(−ql)

)
+q (H− exp(−ql)−H+ exp(ql))

]
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where

βj = qj

q
γj =

k2
j

k2
= εjµj

εµ
= αj α̃j αj = µj

µ
α̃j = εj

ε
(j = 1, 2).

Solving of this set yields:

G1 = 2µ1
λ

q

[
cosh(ql − qh)+ β2

α̃2
sinh(ql − qh)

]
D̃−1

G2 = 2µ2
λ

q

[
cosh(qh)+ β1

α̃1
sinh(qh)

]
D̃−1

F1 = 2µ
λ

q

[
cosh(ql − qh)+ β2

α2
sinh(ql − qh)

]
D−1

F2 = 2µ
λ

q

[
cosh(qh)+ β1

α1
sinh(qh)

]
D−1

H1 = α1
λ

q

{
F1

(
1− γ1

γ1

)[
cosh(ql)+ β2

α̃2
sinh(ql)

]
− F2

(
1− γ2

γ2

)}
D̃−1

H2 = α2
λ

q

{
F1

(
1− γ1

γ1

)
− F2

(
1− γ2

γ2

)[
cosh(ql)+ β1

α̃1
sinh(ql)

]}
D̃−1

where

D =
(
β1

α1
+ β2

α2

)
cosh(ql)+

(
1+ β1β2

α1α2

)
sinh(ql)

D̃ =
(
β1

α̃1
+ β2

α̃2

)
cosh(ql)+

(
1+ β1β2

α̃1α̃2

)
sinh(ql).

It is more convenient to search for the fields in the cylindrical-coordinate system, where
the Hertz vector components are related with the Cartesian ones as

Zr = (px cosϕ + py sinϕ)Zh
Zϕ = (py cosϕ − px sinϕ)Zh
Zz = pzZv + (px cosϕ + py sinϕ)Z̃v.

Calculations of losses by formula (A1), which involved the recurrent relations between
the Bessel functions and the properties of the delta function, lead to the following result for
the caseh = 0:

Q(1)
z =

1

ωε
Re

∫ ∞
0

λ3dλ

i|q|2
{
q1

α̃1

| cosh(ql)+ (β2/α̃2) sinh(ql)|2
|D̃|2

}

Q(2)
z =

1

ωε
Re

∫ ∞
0

λ3dλ

i|q|2
{
q2

α̃2

1

|D̃|2
}

Q(1)
x =

1

2ωε
Re

∫ ∞
0

λdλ

iq

{
q2β1

α̃1

| sinh(ql)+ (β2/α̃2) cosh(ql)|2
|D̃|2

−k2β
∗
1

α∗1

| cosh(ql)+ (β2/α2) sinh(ql)|2
|D|2

}

Q(2)
x =

1

2ωε
Re

∫ ∞
0

λdλ

iq

{
q2β2

α̃2

|β1|2
|̃α1|2

1

|D̃|2
− k2β

∗
2

α∗2

1

|D|2
}
.

(A5)
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Note thatQ(1)
y = Q(1)

x andQ(2)
y = Q(2)

x . Naturally, in the limiting casel →∞ one easily
finds the corresponding formulae for the dipole field losses over conducting surface.

Computation of losses incurred in absorbing media by the diffraction field of a point
dipole oriented in different axes completes the regular part of the problem.
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